Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}

Rishika and Shivika were partners in a firm sharing profits and losses in the ratio of 3 : 2. Their Balance Sheet as at 31st March, 2024 stood as follows:
Balance Sheet of Rishika and Shivika as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Capitals: | Equipment | 45,00,000 | |
| Rishika – ₹30,00,000 Shivika – ₹20,00,000 | 50,00,000 | Investments | 5,00,000 |
| Shivika’s Husband’s Loan | 5,00,000 | Debtors | 35,00,000 |
| Creditors | 40,00,000 | Stock | 8,00,000 |
| Cash at Bank | 2,00,000 | ||
| Total | 95,00,000 | Total | 95,00,000 |
The firm was dissolved on the above date and the following transactions took place:
(i) Equipements were given to creditors in full settlement of their account.
(ii) Investments were sold at a profit of 20% on its book value.
(iii) Full amount was collected from debtors.
(iv) Stock was taken over by Rishika at 50% discount.
(v) Actual expenses of realisation amounted to ₹ 2,00,000 which were paid by the firm. Prepare Realisation Account.
The Second-Order Derivative is the derivative of the first-order derivative of the stated (given) function. For instance, acceleration is the second-order derivative of the distance covered with regard to time and tells us the rate of change of velocity.
As well as the first-order derivative tells us about the slope of the tangent line to the graph of the given function, the second-order derivative explains the shape of the graph and its concavity.
The second-order derivative is shown using \(f’’(x)\text{ or }\frac{d^2y}{dx^2}\).