Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
The Second-Order Derivative is the derivative of the first-order derivative of the stated (given) function. For instance, acceleration is the second-order derivative of the distance covered with regard to time and tells us the rate of change of velocity.
As well as the first-order derivative tells us about the slope of the tangent line to the graph of the given function, the second-order derivative explains the shape of the graph and its concavity.
The second-order derivative is shown using \(f’’(x)\text{ or }\frac{d^2y}{dx^2}\).