Find the relationship between a and b so that the function f is defined by
f(x)=\(\left\{\begin{matrix} ax+1 &if\,x\leq3 \\ bx+3&if\,x>3 \end{matrix}\right.\)
is continuous at x=3.
f(x)=\(\left\{\begin{matrix} ax+1 &if\,x\leq3 \\ bx+3&if\,x>3 \end{matrix}\right.\)
If f is continuous at x=3,then
\(\lim_{x\rightarrow -3}\) f(x)=\(\lim_{x\rightarrow 3+}\)f(x)=f(3) ...(1)
Also,
\(\lim_{x\rightarrow 3^-}\) f(x)=\(\lim_{x\rightarrow 3^-}\)(ax+1)=3a+1
\(\lim_{x\rightarrow 3^+}\) f(x)=\(\lim_{x\rightarrow 3^+}\)(bx+3)=3b+3
f(3)=3a+1
Therefore, from (1), we obtain
3a+1=3b+3=3a+1
⇒3a+1=3b+3
⇒3a=3b+2
⇒a=b+\(\frac{2}{3}\)
Therefore, the required relationship is given by,a=b+\(\frac{2}{3}\)
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}