Find the relationship between a and b so that the function f is defined by
f(x)=\(\left\{\begin{matrix} ax+1 &if\,x\leq3 \\ bx+3&if\,x>3 \end{matrix}\right.\)
is continuous at x=3.
f(x)=\(\left\{\begin{matrix} ax+1 &if\,x\leq3 \\ bx+3&if\,x>3 \end{matrix}\right.\)
If f is continuous at x=3,then
\(\lim_{x\rightarrow -3}\) f(x)=\(\lim_{x\rightarrow 3+}\)f(x)=f(3) ...(1)
Also,
\(\lim_{x\rightarrow 3^-}\) f(x)=\(\lim_{x\rightarrow 3^-}\)(ax+1)=3a+1
\(\lim_{x\rightarrow 3^+}\) f(x)=\(\lim_{x\rightarrow 3^+}\)(bx+3)=3b+3
f(3)=3a+1
Therefore, from (1), we obtain
3a+1=3b+3=3a+1
⇒3a+1=3b+3
⇒3a=3b+2
⇒a=b+\(\frac{2}{3}\)
Therefore, the required relationship is given by,a=b+\(\frac{2}{3}\)
The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 2+x, & \text{if } x \geq 0 \\ 2-x, & \text{if } x \leq 0 \end{cases} \] Then function \( f(x) \) at \( x=0 \) is: