Step 1: Formula for refractive index of prism.
\[
\mu = \frac{\sin \left(\frac{A + D_m}{2}\right)}{\sin \left(\frac{A}{2}\right)}
\]
where $A$ = angle of prism, $D_m$ = angle of minimum deviation.
Step 2: Substitution.
Given $D_m = A$,
\[
\mu = \frac{\sin \left(\frac{A + A}{2}\right)}{\sin \left(\frac{A}{2}\right)}
= \frac{\sin A}{\sin \left(\frac{A}{2}\right)}
\]
Step 3: Trigonometric simplification.
Using $\sin A = 2\sin \left(\frac{A}{2}\right)\cos \left(\frac{A}{2}\right)$,
\[
\mu = \frac{2\sin \left(\frac{A}{2}\right)\cos \left(\frac{A}{2}\right)}{\sin \left(\frac{A}{2}\right)} = 2\cos \left(\frac{A}{2}\right)
\]
Step 4: Condition for minimum deviation $A = D_m$.
This condition holds when $A = 60^\circ$, so
\[
\mu = 2\cos 30^\circ = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}.
\]
If $A = 90^\circ$, then
\[
\mu = 2\cos 45^\circ = 2 \times \frac{1}{\sqrt{2}} = \sqrt{2}.
\]
Step 5: Conclusion.
Depending on $A$, the refractive index comes out to be $\sqrt{2}$ (commonly used case).