Question:

Find the pH if \( pK_b \), \([ \text{base} ]\), and \([ \text{salt} ]\) are given.

Show Hint

For basic buffers, use \( \text{pOH} = pK_b - \log \frac{[\text{base}]}{[\text{salt}]}, \) and convert to pH.
Updated On: Jan 25, 2025
  • \(7\)
  • \(4\)
  • \(9.55\)
  • \(5\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Using the Henderson-Hasselbalch equation for a basic buffer: \[ \text{pOH} = pK_b - \log \frac{[\text{base}]}{[\text{salt}]}, \] and the relationship: \[ \text{pH} = 14 - \text{pOH}. \] Substitute the given values: \( pK_b = 4.75 \), \([\text{base}] = 0.1 \, \text{M} \), \([\text{salt}] = 0.05 \, \text{M} \). Step 1: Substitute into the equation: \[ \text{pOH} = 4.75 - \log \frac{0.1}{0.05}. \] Step 2: Simplify the logarithmic term: \[ \frac{[\text{base}]}{[\text{salt}]} = \frac{0.1}{0.05} = 2. \] \[ \text{pOH} = 4.75 - \log 2. \] Using \( \log 2 \approx 0.301 \): \[ \text{pOH} = 4.75 - 0.301. \] \[ \text{pOH} = 4.449. \] Step 3: Calculate the pH: \[ \text{pH} = 14 - \text{pOH}. \] \[ \text{pH} = 14 - 4.449. \] \[ \text{pH} = 9.551. \] Final Answer: \[ \boxed{\text{pH} = 9.55} \]
Was this answer helpful?
0
0