The resonant frequency of a Hartley oscillator is given by:
\[ f_0 = \frac{1}{2\pi\sqrt{L_{eq}C}} \]
In a Hartley oscillator, the inductive part of the tank circuit consists of two inductors \(L_1\) and \(L_2\) in series, often with mutual inductance \(M\) between them.
The equivalent inductance \(L_{eq}\) is given by \(L_{eq} = L_1 + L_2 + 2M\) (if the fields are aiding, which is typical for oscillator configuration).
Given:
\(L_1 = 20\mu\text{H} = 20 \times 10^{-6} \text{ H}\)
\(L_2 = 40\mu\text{H} = 40 \times 10^{-6} \text{ H}\)
\(M = 2\mu\text{H} = 2 \times 10^{-6} \text{ H}\)
\(C = 1\mu\text{F} = 1 \times 10^{-6} \text{ F}\)
Calculate \(L_{eq}\):
\(L_{eq} = (20 + 40 + 2 \times 2) \times 10^{-6} \text{ H} = (60 + 4) \times 10^{-6} \text{ H} = 64 \times 10^{-6} \text{ H}\).
Now calculate \(f_0\):
\[ f_0 = \frac{1}{2\pi\sqrt{(64 \times 10^{-6})(1 \times 10^{-6})}} = \frac{1}{2\pi\sqrt{64 \times 10^{-12}}} \]
\[ f_0 = \frac{1}{2\pi \times \sqrt{64} \times \sqrt{10^{-12}}} = \frac{1}{2\pi \times 8 \times 10^{-6}} \]
\[ f_0 = \frac{1}{16\pi \times 10^{-6}} = \frac{10^6}{16\pi} \text{ Hz} \]
To express in kHz and match options:
\[ f_0 = \frac{1000 \times 10^3}{16\pi} \text{ Hz} = \frac{1000}{16\pi} \text{ kHz} \]
\[ \frac{1000}{16} = \frac{500}{8} = \frac{250}{4} = \frac{125}{2} = 62.5 \]
So, \[ f_0 = \frac{62.5}{\pi} \text{ kHz} \]
This matches option (a).
\[ \boxed{\frac{62.5}{\pi} \text{ kHz}} \]