Base | Height | Area of triangle |
---|---|---|
15 cm | - | 87 \(cm^2\) |
- | 31.4 mm | 1256 \(mm^2\) |
22 cm | - | 170.5 \(cm^2\) |
\(\text{Area of a triangle}=\frac{1}{2}\times\text{Base}\times\text{Height}\)
(a) \(b = 15 \;cm\)
\(h=?\)
\(Area = \frac{1}{2}\times b\times h=87\; cm^2\)
\(\frac{1}{2}\times15\times h=87\;cm^2\)
\(h= \frac{87\times2}{15}=11.6\;cm^2\)
Therefore, the height of such triangle is \(11.6\) \(cm\).
(b) \(b = ?\)
\(h=31.4\; mm\)
\(Area=\frac{1}{2}\times b\times h=1256 \; mm^2\)
\(b = \frac{1256\times2}{31.4}=80\; mm\)
Therefore, the base of such triangle is \(80 \) \(mm\).
(c) \(b = 22 \;cm ,\;h = ?\)
\(Area=\frac{1}{2}\times b\times h=170.5\; cm^2\)
\(\frac{1}{2}\times 22\times h=170.5\;cm^2\)
\(h=\frac{170.5\times2}{22}=15.5\;cm\)
Therefore, the height of such triangle is \(15.5\) \(cm\).
In triangle \( PQR \), the lengths of \( PT \) and \( TR \) are in the ratio \( 3:2 \). ST is parallel to QR. Two semicircles are drawn with \( PS \) and \( PQ \) as diameters, as shown in the figure. Which one of the following statements is true about the shaded area \( PQS \)? (Note: The figure shown is representative.)