Find the general solution: \(x\frac {dy}{dx}+y-x+xy \ cot\ x=0,\ (x≠0)\)
x\(\frac {dy}{dx}\) + y - x + xy cot x = 0
⇒x\(\frac {dy}{dx}\)+y(1 + xcot x) = x
⇒\(\frac {dy}{dx}\) + (\(\frac 1x\) + cot x)y = 1
This equation is a linear differential equation of the form:
\(\frac {dy}{dx}\) + py = Q (where p = \(\frac 1x\) + cotx and Q = 1)
Now, I.F. = e∫pdx = \(e^{∫(\frac 1x+cot\ x)dx}\) = elog x+log(sin x) = elog(xsin x) = xsin x.
The general solution of the given differential equation is given by the relation,
y(I.F.) = ∫(Q×I.F.)dx+C
⇒y(xsin x) = ∫(1×xsin x)dx + C
⇒y(xsin x) = ∫(xsin x)dx + C
⇒y(xsin x) = x∫sin x dx-∫[\(\frac {d}{dx}\)(x).∫sin xdx] + C
⇒y(xsin x) = x(-cos x)-∫1.(-cos x)dx + C
⇒y(xsin x) = -xcos x + sinx + C
⇒\(y =\) -\(\frac {xcos\ x}{xsin\ x}\) + \(\frac {Sin \ x}{xsin\ x}\) + \(\frac {C}{xsin\ x}\)
⇒\(y =\) \(-\) \(cot\ x\) + \(\frac 1x\) + \(\frac {C}{xsin\ x}\)