We are given the function \( \sin^{-1} \left( 2x \sqrt{1 - x^2} \right) \). To find the derivative, we apply the chain rule. First, let:
\[
y = \sin^{-1}(u) \quad \text{where} \quad u = 2x \sqrt{1 - x^2}.
\]
The derivative of \( \sin^{-1}(u) \) with respect to \( u \) is:
\[
\frac{d}{du} \sin^{-1}(u) = \frac{1}{\sqrt{1 - u^2}}.
\]
Now, we find the derivative of \( u = 2x \sqrt{1 - x^2} \) using the product rule and chain rule:
\[
\frac{du}{dx} = 2 \sqrt{1 - x^2} + 2x \cdot \frac{d}{dx} \left( \sqrt{1 - x^2} \right).
\]
Differentiating \( \sqrt{1 - x^2} \) with respect to \( x \), we get:
\[
\frac{d}{dx} \left( \sqrt{1 - x^2} \right) = \frac{-x}{\sqrt{1 - x^2}}.
\]
Thus, the derivative of \( u \) becomes:
\[
\frac{du}{dx} = 2 \sqrt{1 - x^2} + 2x \cdot \frac{-x}{\sqrt{1 - x^2}}.
\]
Now applying the chain rule:
\[
\frac{d}{dx} \left( \sin^{-1} \left( 2x \sqrt{1 - x^2} \right) \right) = \frac{1}{\sqrt{1 - \left( 2x \sqrt{1 - x^2} \right)^2}} \cdot \frac{du}{dx}.
\]
Simplifying the terms, we find the correct answer is:
\[
\frac{2}{\sqrt{1 - x^2}}.
\]
Thus, the correct answer is option (C).