>
Exams
>
Mathematics
>
Application of Integrals
>
find the area enclosed by y x2 and y x 2
Question:
Find the area enclosed by y=x
2
and y=x+2
VITEEE
Updated On:
May 13, 2024
Hide Solution
Verified By Collegedunia
Solution and Explanation
The correct answer is:
5
6
\frac{5}{6}
6
5
.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Application of Integrals
The integral of the function
1
9
−
4
x
2
\frac{1}{9 - 4x^2}
9
−
4
x
2
1
is:
CUET (UG) - 2024
Mathematics
Application of Integrals
View Solution
For
f
(
x
)
=
∫
e
x
4
−
e
2
x
d
x
,
f(x) = \int \frac{e^x}{\sqrt{4 - e^{2x}}} \, dx,
f
(
x
)
=
∫
4
−
e
2
x
e
x
d
x
,
if the point
(
0
,
π
2
)
\left(0, \frac{\pi}{2}\right)
(
0
,
2
π
)
satisfies
y
=
f
(
x
)
y = f(x)
y
=
f
(
x
)
, then the constant of integration of the given integral is:
CUET (UG) - 2024
Mathematics
Application of Integrals
View Solution
The value of
∫
−
1
1
tan
−
1
x
d
x
\int_{-1}^{1} \tan^{-1} x \, dx
∫
−
1
1
tan
−
1
x
d
x
is:
CUET (UG) - 2024
Mathematics
Application of Integrals
View Solution
The value of
∫
π
6
π
3
d
x
1
+
tan
18
x
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \tan^{18}x}
∫
6
π
3
π
1
+
t
a
n
18
x
d
x
is:
CUET (UG) - 2024
Mathematics
Application of Integrals
View Solution
The value of
I
=
∫
0
1.5
⌊
x
2
⌋
d
x
I = \int_{0}^{1.5} \left\lfloor x^2 \right\rfloor dx
I
=
∫
0
1.5
⌊
x
2
⌋
d
x
, where [ ] denotes the greatest integer function, is:
CUET (UG) - 2024
Mathematics
Application of Integrals
View Solution
View More Questions
Questions Asked in VITEEE exam
Let
f
(
x
)
f(x)
f
(
x
)
be defined as:
f
(
x
)
=
{
3
−
x
,
x
<
−
3
6
,
−
3
≤
x
≤
3
3
+
x
,
x
>
3
f(x) = \begin{cases} 3 - x, & x<-3 \\ 6, & -3 \leq x \leq 3 \\ 3 + x, & x>3 \end{cases}
f
(
x
)
=
⎩
⎨
⎧
3
−
x
,
6
,
3
+
x
,
x
<
−
3
−
3
≤
x
≤
3
x
>
3
Let
α
\alpha
α
be the number of points of discontinuity of
f
(
x
)
f(x)
f
(
x
)
and
β
\beta
β
be the number of points where
f
(
x
)
f(x)
f
(
x
)
is not differentiable. Then,
α
+
β
\alpha + \beta
α
+
β
is:
VITEEE - 2024
Matrices
View Solution
The area bounded by
y
−
1
=
∣
x
∣
y - 1 = |x|
y
−
1
=
∣
x
∣
and
y
+
1
=
∣
x
∣
y + 1 = |x|
y
+
1
=
∣
x
∣
is:
(a)
1
2
\frac{1}{2}
2
1
VITEEE - 2024
Conic sections
View Solution
The length of the perpendicular from the point
(
1
,
−
2
,
5
)
(1, -2, 5)
(
1
,
−
2
,
5
)
on the line passing through
(
1
,
2
,
4
)
(1, 2, 4)
(
1
,
2
,
4
)
and parallel to the line given by
x
+
y
−
z
=
0
x + y - z = 0
x
+
y
−
z
=
0
and
x
−
2
y
+
3
z
−
5
=
0
x - 2y + 3z - 5 = 0
x
−
2
y
+
3
z
−
5
=
0
is:
VITEEE - 2024
Differential equations
View Solution
If
A
A
A
and
B
B
B
are the two real values of
k
k
k
for which the system of equations
x
+
2
y
+
z
=
1
x + 2y + z = 1
x
+
2
y
+
z
=
1
,
x
+
3
y
+
4
z
=
k
x + 3y + 4z = k
x
+
3
y
+
4
z
=
k
,
x
+
5
y
+
10
z
=
k
2
x + 5y + 10z = k^2
x
+
5
y
+
10
z
=
k
2
is consistent, then
A
+
B
=
A + B =
A
+
B
=
:
(a) 3
VITEEE - 2024
Binomial theorem
View Solution
A and B are independent events of a random experiment if and only if:
VITEEE - 2024
Relations and functions
View Solution
View More Questions