>
Exams
>
Mathematics
>
Maxima and Minima
>
find the approximate value of f 3 01 where f x 3x2
Question:
Find the approximate value of
f
(
3.01
)
, where
f
(
x
)
=
3
x
2
+
3
.
MHT CET
Updated On:
Jun 23, 2024
(A) 30.18
(B) 30.018
(C) 30.28
(D) 30.08
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Explanation:
Let, small charge in
x
be
Δ
x
and the corresponding change in
y
is
Δ
y
.
Δ
y
=
d
y
d
x
Δ
x
=
f
′
(
x
)
Δ
x
Now that
Δ
y
=
f
(
x
+
Δ
x
)
−
f
(
x
)
Therefore,
f
(
x
+
Δ
x
)
=
f
(
x
)
+
Δ
y
Given:
f
(
x
)
=
3
x
2
+
3
Let,
x
+
Δ
x
=
3.01
=
3
+
0.01
Therefore,
x
=
3
and
Δ
x
=
0.01
f
(
x
+
Δ
x
)
=
f
(
x
)
+
Δ
y
⇒
f
(
x
+
Δ
x
)
=
f
(
x
)
+
f
′
(
x
)
Δ
x
⇒
f
(
3.01
)
=
3
x
2
+
3
+
(
6
x
)
Δ
x
⇒
f
(
3.01
)
=
3
(
3
)
2
+
3
+
(
6
⋅
3
)
(
0.01
)
⇒
f
(
3.01
)
=
30
+
0.18
⇒
f
(
3.01
)
=
30.18
Hence, the correct option is (A).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Maxima and Minima
Let \( \alpha_1 \) and \( \beta_1 \) be the distinct roots of \( 2x^2 + (\cos\theta)x - 1 = 0, \ \theta \in (0, 2\pi) \). If \( m \) and \( M \) are the minimum and the maximum values of \( \alpha_1 + \beta_1 \), then \( 16(M + m) \) equals:
JEE Main - 2025
Mathematics
Maxima and Minima
View Solution
It is given that at x = 1, the function \(f(x) = x^4 - 62x^2 + ax + 9\), attains its maximum value in the interval \([0, 2]\). Then, the value of 'a' is
CUET (PG) - 2025
Statistics
Maxima and Minima
View Solution
Function, \(f(x) = -|x-1|+5, \forall x \in R\) attains maximum value at x =
CUET (PG) - 2025
Statistics
Maxima and Minima
View Solution
The maximum values of the function
\(\sin(x)+\cos(2x)\), are
CUET (PG) - 2025
Statistics
Maxima and Minima
View Solution
Let $ f(x) = |x^2 - 4x + 3| + |x^2 - 5x + 6| $. The
minimum value of $ f(x) $ is:
BITSAT - 2025
Mathematics
Maxima and Minima
View Solution
View More Questions
Questions Asked in MHT CET exam
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral:
\[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \]
MHT CET - 2025
Integration
View Solution
If y = tan
-1
((2 + 3x) / (3 - 2x)) + tan
-1
(4x / (1 + 5x
2
)), then
dy/dx =
MHT CET - 2025
physical world
View Solution
Two point charges \( +2 \, \mu\text{C} \) and \( -3 \, \mu\text{C} \) are placed 10 cm apart in vacuum. What is the electrostatic force between them?
MHT CET - 2025
coulombs law
View Solution
View More Questions