Let the foci of a hyperbola $ H $ coincide with the foci of the ellipse $ E : \frac{(x - 1)^2}{100} + \frac{(y - 1)^2}{75} = 1 $ and the eccentricity of the hyperbola $ H $ be the reciprocal of the eccentricity of the ellipse $ E $. If the length of the transverse axis of $ H $ is $ \alpha $ and the length of its conjugate axis is $ \beta $, then $ 3\alpha^2 + 2\beta^2 $ is equal to:
The slope of the tangent to the curve \( x = \sin\theta \) and \( y = \cos 2\theta \) at \( \theta = \frac{\pi}{6} \) is ___________.
Solve the following L.P.P. by graphical method:
Maximize:
\[ z = 10x + 25y. \] Subject to: \[ 0 \leq x \leq 3, \quad 0 \leq y \leq 3, \quad x + y \leq 5. \]