At the phase crossover frequency \( \omega = 1.732 \), the phase of \( G(j\omega)H(j\omega) \) is -180°.
Calculate magnitude at this frequency and equate to 1 for sustained oscillation condition.
\[
|G(j\omega)H(j\omega)| = \left|\frac{1}{j\omega (1 + j\omega)}\right| = \frac{1}{\omega \sqrt{1 + \omega^2}} = \frac{1}{1.732 \cdot \sqrt{1 + 3}} = \frac{1}{1.732 \cdot 2} \approx \frac{1}{3.464} \Rightarrow K = \frac{1}{3.464} = 0.288 \approx \frac{1}{4}
\]