$F(z)=\dfrac{1}{1-z}$, when expanded as a power series around $z=2$, would result in $F(z)=\sum_{k=0}^{\infty} a_k (z-2)^k$ with ROC $|z-2|<1$. The coefficients $a_k,\;k\ge 0$, are given by the expression ________.
Show Hint
Around a nonzero center $z_0$, rewrite the function in powers of $w=z-z_0$ and apply the geometric series $\frac{1}{1-u}=\sum u^k$ when $|u|<1$.
Step 1: Shift to $(z-2)$. Let $w=z-2 \Rightarrow z=2+w$. Then
\[
F(z)=\frac{1}{1-(2+w)}=\frac{1}{-1-w}=-\frac{1}{1+w}.
\]
Step 2: Use the geometric series for $|w|<1$.
\[
\frac{1}{1+w}=\sum_{k=0}^{\infty}(-1)^k w^k \Rightarrow
-\frac{1}{1+w}=\sum_{k=0}^{\infty}(-1)^{k+1} w^k.
\]
Since $w=z-2$, we have $a_k=(-1)^{k+1}$ and ROC $|z-2|=|w|<1$.