Step 1: Express $x$.
\[
\sum_{n=1}^{13}\frac{1}{n}=\frac{x}{13!}, ⇒
x=\sum_{n=1}^{13}\frac{13!}{n}.
\]
Step 2: Work modulo 11.
Since $13!$ is divisible by 11, every term $\tfrac{13!}{n}$ with $n\neq 11$ is a multiple of 11, hence contributes $0 \pmod{11}$.
Only the $n=11$ term survives.
Step 3: Compute the surviving term.
\[
\frac{13!}{11}=1 2 3s 10 12 13.
\]
Reduce mod 11:
- $12\equiv 1$,
- $13\equiv 2$,
so product $\equiv (1 2s 10) 1 2 \pmod{11}$.
By Wilson’s theorem, $10!\equiv -1 \pmod{11}$.
\[
⇒ \frac{13!}{11}\equiv (-1) 1 2=-2\equiv 9 \pmod{11}.
\]
\[
\boxed{9}
\]