Nitrogen, sulphur, and halogens are covalently bonded in organic compounds. For their detection, they have to be first converted to ionic form. This is done by fusing the organic compound with sodium metal. This is called “Lassaigne's test“. The chemical equations involved in the test are
\(Na+C+N→NaCN\)
\(Na+S+C+N→NaSCN\)
\(2Na+S→Na_2S\)
\(Na+X→NaX(X=CI,Br,I)\)
Carbon, nitrogen, sulphur, and halogen come from organic compounds.
List-I | List-II | ||
(A) | 1 mol of H2O to O2 | (I) | 3F |
(B) | 1 mol of MnO-4 to Mn2+ | (II) | 2F |
(C) | 1.5 mol of Ca from molten CaCl2 | (III) | 1F |
(D) | 1 mol of FeO to Fe2O3 | (IV) | 5F |
List-I | List-II | ||
(A) | [Co(NH3)5(NO2)]Cl2 | (I) | Solvate isomerism |
(B) | [Co(NH3)5(SO4)]Br | (II) | Linkage isomerism |
(C) | [Co(NH3)6] [Cr(CN)6] | (III) | Ionization isomerism |
(D) | [Co(H2O)6]Cl3 | (IV) | Coordination isomerism |
SN1 reaction mechanism takes place by following three steps –
The SN2 reaction mechanism involves the nucleophilic substitution reaction of the leaving group (which generally consists of halide groups or other electron-withdrawing groups) with a nucleophile in a given organic compound.
The mechanism of an electrophilic aromatic substitution reaction contains three main components which are:
The electrophilic substitution reaction mechanism is composed of three steps, which will be discussed more below.