Question:

Evaluate the integral: \[ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx = ? \]

Show Hint

Use substitution \( t = \sqrt{x} \) to simplify integrals involving \( \cos \sqrt{x} \) divided by \( \sqrt{x} \).
  • \( 2 \sin \sqrt{x} + c \)
  • \( \sin \sqrt{x} + c \)
  • \( \cos \sqrt{x} + c \)
  • \( 2 \cos \sqrt{x} + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let: \[ t = \sqrt{x} \implies x = t^2, \quad dx = 2t \, dt \] Substitute in the integral: \[ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx = \int \frac{\cos t}{t} \cdot 2t \, dt = \int 2 \cos t \, dt = 2 \sin t + c = 2 \sin \sqrt{x} + c \]
Was this answer helpful?
0
0