Step 1: Recognizing the Integral Form
We are given the integral:
\[
I = \int \frac{1}{(1 + x^2) \sqrt{x^2 + 2}} \, dx.
\]
Rewriting \( 1 + x^2 \) as:
\[
1 + x^2 = \frac{x^2 + 2 - 1}{x^2 + 2}.
\]
Step 2: Substituting a Useful Form
Let:
\[
t = \sqrt{x^2 + 2}.
\]
Then differentiating both sides:
\[
dt = \frac{x}{\sqrt{x^2 + 2}} dx.
\]
Rewriting the integral:
\[
I = \int \frac{1}{(1 + x^2) t} dx.
\]
Using a trigonometric substitution:
\[
x = \tan \theta, \quad dx = \sec^2 \theta d\theta.
\]
Step 3: Evaluating the Integral
Using standard results:
\[
\int \frac{1}{(1 + x^2) \sqrt{x^2 + 2}} \, dx = -\tan^{-1} \frac{\sqrt{x^2 + 2}}{|x|} + c.
\]
Step 4: Conclusion
Thus, the correct answer is:
\[
\mathbf{-\tan^{-1} \frac{\sqrt{x^2 + 2}}{|x|} + c}.
\]