Step 1: Finding \( \tan (\cos^{-1} \frac{4}{5}) \).
Using the identity:
\[
\tan (\cos^{-1} x) = \frac{\sqrt{1 - x^2}}{x}
\]
Substituting \( x = \frac{4}{5} \):
\[
\tan (\cos^{-1} \frac{4}{5}) = \frac{\sqrt{1 - \left(\frac{4}{5}\right)^2}}{\frac{4}{5}}
\]
\[
= \frac{\sqrt{\frac{25}{25} - \frac{16}{25}}}{\frac{4}{5}}
\]
\[
= \frac{\sqrt{9/25}}{4/5} = \frac{3/5}{4/5} = \frac{3}{4}
\]
Step 2: Computing total expression.
Using sum of tangent formula:
\[
\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
\]
Substituting values \( A = \cos^{-1} \frac{4}{5} \), \( B = \tan^{-1} \frac{2}{3} \):
\[
\tan A = \frac{3}{4}, \quad \tan B = \frac{2}{3}
\]
\[
\tan(A + B) = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \left(\frac{3}{4} \times \frac{2}{3}\right)}
\]
\[
= \frac{\frac{9}{12} + \frac{8}{12}}{1 - \frac{6}{12}}
\]
\[
= \frac{17}{6} \neq \frac{6}{17}, \frac{7}{16}, \frac{16}{7}
\]
Thus, the correct answer is (D).