Step 1: Recognizing the beta integral.
The given integral is of the form \( \int_0^1 x^m (1 - x)^n \, dx \), which is a Beta function:
\[
\int_0^1 x^m (1 - x)^n \, dx = B(m+1, n+1) = \frac{m! n!}{(m+n+1)!}.
\]
Step 2: Applying the formula.
In our case, \( m = 4 \) and \( n = 5 \), so the integral becomes:
\[
\int_0^1 x^4 (1 - x)^5 \, dx = B(5, 6) = \frac{4! 5!}{(4+5+1)!} = \frac{24 \times 120}{10!}.
\]
We compute:
\[
\frac{24 \times 120}{10!} = \frac{2880}{3628800} = \frac{1}{1260}.
\]
Step 3: Final result.
Thus, the reciprocal of this value is:
\[
\left( \int_0^1 x^4 (1 - x)^5 \, dx \right)^{-1} = 1260.
\]