Step 1: Use Integration by Parts
Using the formula:
\[
\int u \, dv = u v - \int v \, du,
\]
let:
\[
u = \log x, \quad dv = dx.
\]
Step 2: Compute \( du \) and \( v \)
\[
du = \frac{1}{x} dx, \quad v = x.
\]
Step 3: Apply Integration by Parts
\[
\int \log x \,dx = x \log x - \int x \times \frac{1}{x} dx.
\]
\[
= x \log x - \int dx.
\]
\[
= x \log x - x + C.
\]