Step 1: Use the trigonometric identity.
We need to simplify the integrand. We can multiply the numerator and denominator by \( 1 + \sin x \) to rationalize the denominator:
\[
\frac{1}{1 - \sin x} \times \frac{1 + \sin x}{1 + \sin x} = \frac{1 + \sin x}{(1 - \sin^2 x)} = \frac{1 + \sin x}{\cos^2 x}
\]
Step 2: Simplify the integral.
Now the integral becomes:
\[
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1 + \sin x}{\cos^2 x} \, dx
\]
This can be split into two parts:
\[
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\cos^2 x} \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{\cos^2 x} \, dx
\]
Step 3: Solve the first integral.
The first integral is:
\[
\int \frac{1}{\cos^2 x} \, dx = \tan x
\]
Step 4: Solve the second integral.
For the second integral, use substitution \( u = \cos x \), so \( du = -\sin x \, dx \):
\[
\int \frac{\sin x}{\cos^2 x} \, dx = - \int \frac{du}{u^2} = \frac{1}{u} = \frac{1}{\cos x}
\]
Step 5: Combine the results.
Now combine the results from both integrals:
\[
\left[ \tan x + \frac{1}{\cos x} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}
\]
Evaluating the limits, we get:
\[
\left( \tan \frac{\pi}{2} + \sec \frac{\pi}{2} \right) - \left( \tan \frac{\pi}{4} + \sec \frac{\pi}{4} \right)
\]
\[
= \left( \infty + 1 \right) - \left( 1 + \sqrt{2} \right) = \infty
\]
Final Answer: The integral diverges, so the answer is: \[ \boxed{\infty} \]
Solve the following assignment problem for minimization :
Find x if the cost of living index is 150 :