Step 1: Apply symmetry property of definite integrals
Let:
\[
I = \int_{0}^{\pi/4} \frac{x}{1 + \cos 2x + \sin 2x} \, dx.
\]
Using the property \( \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \), we get:
\[
I = \int_{0}^{\pi/4} \frac{\pi/4 - x}{1 + \cos 2x + \sin 2x} \, dx.
\]
Step 2: Combine integrals
Adding the two forms of \( I \):
\[
2I = \int_{0}^{\pi/4} \frac{\pi/4}{1 + \cos 2x + \sin 2x} \, dx.
\]
Step 3: Simplify the integrand
Rewrite \( 1 + \cos 2x + \sin 2x \):
\[
\cos 2x + \sin 2x = \sqrt{2} \sin(2x + \pi/4),
\]
and simplify:
\[
I = \frac{\pi}{16} \int_{0}^{\pi/4} \frac{1}{\cos^2 x + \sin x \cos x} \, dx.
\]
Step 4: Integrate and simplify
The integral evaluates to:
\[
I = \frac{\pi}{16} \left( \log |1 + \tan x| \right)_{0}^{\pi/4}.
\]
Substitute limits:
\[
I = \frac{\pi}{16} \log 2.
\]
Conclusion: The integral evaluates to \( \frac{\pi}{16} \log 2 \).