Using the trigonometric identity:
\[
\sin A \cos B = \frac{1}{2} \left[ \sin(A + B) + \sin(A - B) \right],
\]
we rewrite the integral as:
\[
\int_{0}^{\pi/2} \sin 2x \cos 3x \, dx = \frac{1}{2} \int_{0}^{\pi/2} \left[ \sin(5x) + \sin(-x) \right] \, dx.
\]
Simplify:
\[
\sin(-x) = -\sin(x), \quad {so the integral becomes:}
\]
\[
\frac{1}{2} \left[ \int_{0}^{\pi/2} \sin(5x) \, dx - \int_{0}^{\pi/2} \sin(x) \, dx \right].
\]
1. Evaluate \( \int \sin(5x) \, dx \):
\[
\int \sin(5x) \, dx = -\frac{1}{5} \cos(5x).
\]
At the limits:
\[
\int_{0}^{\pi/2} \sin(5x) \, dx = -\frac{1}{5} \left[ \cos(5 \cdot \pi/2) - \cos(0) \right] = -\frac{1}{5} \left[ 0 - 1 \right] = \frac{1}{5}.
\]
2. Evaluate \( \int \sin(x) \, dx \):
\[
\int \sin(x) \, dx = -\cos(x).
\]
At the limits:
\[
\int_{0}^{\pi/2} \sin(x) \, dx = -\left[ \cos(\pi/2) - \cos(0) \right] = -\left[ 0 - 1 \right] = 1.
\]
Substitute back:
\[
\int_{0}^{\pi/2} \sin 2x \cos 3x \, dx = \frac{1}{2} \left[ \frac{1}{5} - 1 \right] = \frac{1}{2} \left[ -\frac{4}{5} \right] = -\frac{2}{5}.
\]
Final Answer: \( \boxed{-\frac{2}{5}} \)