(a) (-30) ÷ 10 = (-30) × \(\frac {1}{10}\) = \(\frac {-30×1}{10}\) = -3
(b) 50 ÷ (-5) = 50 × \((-\frac 15) \)= \(\frac {50×(-1)}{5}\) = -10
(c) (-36) ÷ (-9) = (-36) × \(\frac 19\) = \(\frac {(-36)×(-1)}{9}\) = \(\frac {36}{9}\) = 4
(d) (-49) ÷ (49) = (-49) × \(\frac {1}{49}\)= \(\frac {-49}{49}\) = -1
(e) 13 ÷ [(-2) + 1] = 13 ÷ (-1) = 13 × \((\frac {-1}{1})\) = -13
(f) 0 ÷ (–12) = 0 × \((\frac {-1}{12})\) = \(\frac {0}{12}\) = 0
(g) (–31) ÷ [(–30) + (–1)] = (-31) ÷ (-30 - 1) = (-31) ÷ (-31) = (-31) × \((\frac {-1}{31})\) = \(\frac {31}{31}\) = 1
(h) [(–36) ÷ 12] ÷ 3 = [(-36) ×\(\frac {1}{12}\)] ×\(\frac {1}{3}\)= (-3) × \(\frac 13\) =\( \frac {-3}{3}\) = -1
(i) [(– 6) + 5)] ÷ [(–2) + 1] = (-6 + 5) ÷ (-2 + 1) = (-1) ÷ (-1) = (-1) × \(\frac {(-1)}{1}\) = 1
Using laws of exponents, simplify and write the answer in exponential form:
(i) 32 × 34 × 38 (ii) 615 ÷ 610 (iii) a3 × a2 (iv) 7x×72 (v) (52) ÷ 53 (vi) 25 × 55 (vii) a4 × b4 (viii) (34)3(ix) (220 ÷ 215)×23 (x) 8t ÷ 82