Question:

Electron of charge \( e \) moves in hydrogen atom (radius \( r \)). Coulomb force between nucleus and electron is:
(Here \( K = \frac{1}{4 \pi \varepsilon_0} \))

Show Hint

Remember Coulomb’s Law: attractive force = negative sign; use \( K = \frac{1}{4\pi \varepsilon_0} \)
Updated On: May 13, 2025
  • \( -K \cdot \frac{e^2}{r^3} \hat{r} \)
  • \( K \cdot \frac{e^2}{r^3} \hat{r} \)
  • \( -K \cdot \frac{e^2}{r^2} \hat{r} \)
  • \( K \cdot \frac{e^2}{r^2} \hat{r} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Coulomb force: \( \vec{F} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{e^2}{r^2} \hat{r} = K \cdot \frac{e^2}{r^2} \hat{r} \)
Direction is attractive \( \Rightarrow \vec{F} = -K \cdot \frac{e^2}{r^2} \hat{r} \)
Was this answer helpful?
0
0

Top Questions on Electrostatics

View More Questions