Step 1: Relation of terminal velocity with radius.
For a spherical drop (Stokes’ law region):
\[
v_t \propto r^2
\]
Step 2: Coalescence of 8 drops.
If 8 identical drops merge, volume becomes 8 times.
\[
\frac{4}{3}\pi R^3 = 8 \cdot \frac{4}{3}\pi r^3
\Rightarrow R^3 = 8r^3
\Rightarrow R = 2r
\]
Step 3: Compare terminal velocities.
\[
\frac{v_2}{v_1} = \left(\frac{R}{r}\right)^2 = (2)^2 = 4
\]
Given \(v_1 = 6\,cm\,s^{-1}\):
\[
v_2 = 4 \times 6 = 24\,cm\,s^{-1}
\]
Final Answer:
\[
\boxed{24\,cm\,s^{-1}}
\]