Step 1: Convert mirror reading to actual time.
On an analog dial, the mirror time equals \(\text{dial period} - \text{actual time}\).
Here the dial period is \(10{:}00{:}00\) (i.e., \(10\) hours). So,
\[
\text{Actual time} \;=\; 10{:}00{:}00 - 3{:}42{:}20.
\]
Work in Planet-M seconds (1 min \(=40\) s, 1 hr \(=60\times 40=2400\) s):
\(10{:}00{:}00 = 10\times 2400 = 24000\) s, \quad
\(3{:}42{:}20 = 3\times 2400 + 42\times 40 + 20 = 8900\) s.
Thus,
\[
24000 - 8900 = 15100\ \text{s}
\Rightarrow 6\ \text{hrs}\; 17\ \text{mins}\; 20\ \text{s}.
\]
Step 2: Add 5 Planet-M minutes.
\(5\) minutes \(= 5\times 40 = 200\) s.
\(15100 + 200 = 15300\) s \(\Rightarrow\) \(6\) hrs \(22\) mins \(20\) s.
\[
\boxed{\text{Time after 5 minutes }=\ 6\ \text{hours}\ 22\ \text{minutes}\ 20\ \text{seconds}}
\]