Step 1: Formula (Rydberg equation).
\[
\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)
\]
For Balmer series: $n_1 = 2$, $n_2 = 3,4,5,...$
where $R_H = 1.097 \times 10^7 \, m^{-1}$.
Step 2: For H$_\alpha$ line ($n_2 = 3 \to 2$).
\[
\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{3^2}\right)
= 1.097 \times 10^7 \left(\frac{1}{4} - \frac{1}{9}\right)
\]
\[
= 1.097 \times 10^7 \left(\frac{5}{36}\right) \approx 1.523 \times 10^6 \, m^{-1}
\]
\[
\lambda_{H_\alpha} \approx 6563 \, \text{\AA}
\]
Step 3: For H$_\beta$ line ($n_2 = 4 \to 2$).
\[
\frac{1}{\lambda} = R_H \left(\frac{1}{4} - \frac{1}{16}\right)
= 1.097 \times 10^7 \times \frac{3}{16}
\]
\[
= 2.06 \times 10^6 \, m^{-1} \quad \Rightarrow \quad \lambda_{H_\beta} \approx 4861 \, \text{\AA}
\]
Step 4: Series limit (when $n_2 \to \infty$).
\[
\frac{1}{\lambda} = R_H \left(\frac{1}{4} - 0\right) = \frac{R_H}{4}
\]
\[
\lambda = \frac{4}{R_H} \approx \frac{4}{1.097 \times 10^7} \approx 3.646 \times 10^{-7} \, m
\]
\[
\lambda \approx 3646 \, \text{\AA}
\]
Step 5: Conclusion.
- H$_\alpha$: $6563 \, \text{\AA}$
- H$_\beta$: $4861 \, \text{\AA}$
- Balmer limit: $3646 \, \text{\AA}$