Let \( A \) be a \( 3 \times 3 \) matrix defined as:
\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \]Find the eigenvalues of \( A^{13} \).
Eigenvalues of \( A^{13} \) are powers of the eigenvalues of \( A \).
Eigenvalues of \( A^{13} \) are the eigenvalues of \( A \) raised to the power of 13.
Eigenvalues of \( A^{13} \) are the eigenvalues of \( A \) raised to the power of 13.
Eigenvalues of \( A^{13} \) are the eigenvalues of \( A \) raised to the power of 13.
Step 1:
In this case, we need to calculate the eigenvalues of \( A^{13} \). First, let's find the eigenvalues of matrix \( A \) by solving the characteristic equation.
- The eigenvalues of \( A \) are \( \lambda_1 = 3 \), \( \lambda_2 = -1 \), \( \lambda_3 = -1 \).
Step 2: Find the eigenvalues of \( A^{13} \).
- The eigenvalues of \( A^{13} \) are the eigenvalues of \( A \) raised to the power 13. Therefore, the eigenvalues of \( A^{13} \) are:
\[
3^{13}, \quad (-1)^{13} = -1, \quad (-1)^{13} = -1.
\]
Thus, the correct answer is (A).
Match the following layers with their corresponding functionalities:
\[ \begin{array}{|c|c|} \hline \textbf{Layer} & \textbf{Functionality} \\ \hline \text{Networking Layer} & \text{Data packet transfer} \\ \text{Transport Layer} & \text{Host-to-host communication} \\ \text{Data Link Layer} & \text{Error detection and correction} \\ \hline \end{array} \]What is the time complexity of the following algorithm?
int func(int n) {
for (int i = 1; i < = n; i++) {
for (int j = 1; j < = n; j++) {
printf("Hello");
}
}
}
Consider the following process information for Shortest Remaining Time First (SRTF) scheduling:
\[ \begin{array}{|c|c|c|} \hline \textbf{Process} & \textbf{Arrival Time (AT)} & \textbf{Burst Time (BT)} \\ \hline P1 & 0 & 10 \\ P2 & 1 & 13 \\ P3 & 2 & 6 \\ P4 & 8 & 9 \\ \hline \end{array} \]Find the turnaround time for each process.
Given the following cache parameters:
\[ \begin{array}{|c|c|} \hline \textbf{Tag} & 4 \, \text{bits} \\ \textbf{Index} & 12 \, \text{bits} \\ \textbf{Block Size} & 1 \, \text{byte} \\ \hline \end{array} \]Find the size of the main memory and the size of the cache memory.
Consider the following code:
main() { int x = 126, y = 105; { if (x > y) x = x - y; else y = y - x; } while (x != y) printf("%d", x); }
Consider the following code:
int a; int arr[] = {30, 50, 10}; int *ptr = arr[10] + 1; a = *ptr; (*ptr)++; ptr = ptr + 1; printf("%d", a + arr[1] + *ptr);
What is the output of the following C code?
void foo(int *p, int x) { *p = x; } void main() { int *z; int a = 20, b = 25; z = a; // Incorrect: Should be z = a; foo(z, b); printf("%d", a); }
Issue: The statement z = a;
is invalid because a
is an integer, and z
is a pointer.
Find the signed binary expansion of the number -6.
Which of the following is the greatest? \[ 0.6, \ 0.666, \ \frac{5}{6}, \ \frac{2}{3} \]
Given the following information:
The logical address (L.A.) is 32 bits. The physical address (P.A.) is 20 bits. The page size (P.S.) is 2048 bytes (2 KB). What is the maximum number of entries in the page table?