Question:

\(\displaystyle \int \big(\cos\theta\,\csc^{2}\theta-\cos\theta\,\cot^{2}\theta\big)\,d\theta=\ \ ?\)

Show Hint

Use $\csc^2-\cot^2=1$ (parallel to $\sec^2-\tan^2=1$).
  • \(\log\csc\theta+\cot\theta+k\)
  • \(\csc\theta\cot\theta+k\)
  • \(k+\sin\theta\)
  • \(\theta+k\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Factor \(\cos\theta\): \(\cos\theta(\csc^{2}\theta-\cot^{2}\theta)\). Identity: \(\csc^{2}\theta-\cot^{2}\theta=1\). So integral \(\int \cos\theta\,d\theta=\sin\theta+k\).
Was this answer helpful?
0
0