Step 1: Parametrize the line.
The given line equation is:
\[
\frac{x - 1}{2} = -y = \frac{2z + 1}{6}.
\]
Let \( t \) be the parameter. From each equation:
\[
\frac{x - 1}{2} = t \quad \Rightarrow \quad x - 1 = 2t \quad \Rightarrow \quad x = 2t + 1,
\]
\[
-y = t \quad \Rightarrow \quad y = -t,
\]
\[
\frac{2z + 1}{6} = t \quad \Rightarrow \quad 2z + 1 = 6t \quad \Rightarrow \quad 2z = 6t - 1 \quad \Rightarrow \quad z = 3t - \frac{1}{2}.
\]
Step 2: Extract direction ratios.
The coefficients of \( t \) in \( x = 2t + 1 \), \( y = -t \), and \( z = 3t - \frac{1}{2} \) are:
\[
2, -1, 3.
\]
Step 3: Conclusion.
The direction ratios of the line are:
\[
\boxed{2, -1, 3}.
\]