Step 1: Find cone dimensions from the given point.
Let base radius $R=13$ cm Diameter $26$ cm), height $H$ cm, and slant height $L$ cm.
The point on the surface is $17$ cm along the generator from the rim and is $15$ cm below the top plane, so
\[
\frac{H}{L}=\frac{15}{17}⇒ L=\frac{17}{15}H.
\]
But $L^2=R^2+H^2$; hence
\[
\left(\frac{17}{15}\right)^2=1+\frac{R^2}{H^2}
⇒ \frac{R}{H}=\frac{8}{15}⇒ H=\frac{15}{8} 13=\frac{195}{8}=24.375\ \text{cm}.
\]
Step 2: Volume that drains until the level reaches the hole.
Water stops when the level falls to the hole, i.e., the new water height is $H-15=9.375$ cm.
Since cross-sections are similar, volume scales as (height)$^3$. If $V$ is the full cone volume,
\[
V=\frac{1}{3}\pi R^2H,\qquad
V_{\text{remain}}=V\left(\frac{H-15}{H}\right)^3
=V\left(\frac{5}{13}\right)^3.
\]
Thus drained volume
\[
V_{\text{drain}}=V\left(1-\frac{125}{2197}\right).
\]
Numerically (in m$^3$): $R=0.13,\ H=0.24375$,
\[
V=\frac{1}{3}\pi(0.13)^2(0.24375)\approx 0.0043138,
V_{\text{drain}}\approx 0.0040684\ \text{m}^3.
\]
Step 3: Time from flow rate.
Pipe radius $r=5\text{ mm}=0.005$ m, speed $v=10$ m/min.
Volumetric flow $Q=v \pi r^2=10 \pi(0.005)^2\approx 7.85398\times 10^{-4}\ \text{m}^3/\text{min}$.
Time
\[
t=\frac{V_{\text{drain}}}{Q}
\approx \frac{0.0040684}{7.85398\times 10^{-4}}
\approx 5.18\ \text{minutes}.
\]
\[
\boxed{t\approx 5.18\ \text{minutes}}
\]
which lies in $\,[5,\ 5.2)\,$ minutes.