Determine if f is defined by
\(f(x)=\left\{\begin{matrix} x^2sin\frac{1}{x}, &if\,x\neq0 \\ 0,&if\,x=0 \end{matrix}\right.\)
is a continuous function?
\(f(x)=\left\{\begin{matrix} x^2sin\frac{1}{x}, &if\,x\neq0 \\ 0,&if\,x=0 \end{matrix}\right.\)
It is evident that f is defined at all points of the real line.
Let c be a real number.
Case I:
If c≠0,then f(c)=\(c^2sin\frac{1}{c}\)
\(\lim_{x\rightarrow c}\)f(x)=\(\lim_{x\rightarrow c}\) (\(x^2sin\frac{1}{x}\)=(\(\lim_{x\rightarrow c}\) x2)(\(\lim_{x\rightarrow c}\) sin\(\frac{1}{x}\))=c2sin\(\frac{1}{c}\)
∴\(\lim_{x\rightarrow c}\) f(x)=f(c)
Therefore,f is continuous at all points x, such that x≠0
Case II:
If c=0,then f(0)=0 and \(\lim_{x\rightarrow 0^-}\)f(x)=\(\lim_{x\rightarrow 0^-}\)(\(x^2sin\frac{1}{x}\))=\(\lim_{x\rightarrow 0}\)(\(x^2sin\frac{1}{x}\))
It is known that -1≤\(sin\frac{1}{x}\)≤1, x≠0
\(\Rightarrow\)-x2≤s\(sin\frac{1}{x}\)≤x2
\(\Rightarrow\)\(\lim_{x\rightarrow 0}\)(-x2)≤\(\lim_{x\rightarrow 0}\)(\(x^2sin\frac{1}{x}\))≤\(\lim_{x\rightarrow 0}\)x2
\(\Rightarrow\)0≤\(\lim_{x\rightarrow 0}\)(\(x^2sin\frac{1}{x}\))≤0
\(\Rightarrow\)\(\lim_{x\rightarrow 0}\)(\(x^2sin\frac{1}{x}\))=0
∴\(\lim_{x\rightarrow 0^-}\) f(x)=0
Similarly,\(\lim_{x\rightarrow 0^+}\)f(x)=\(\lim_{x\rightarrow 0^+}\)(\(x^2sin\frac{1}{x}\))=\(\lim_{x\rightarrow 0}\)(\(x^2sin\frac{1}{x}\))=0
\(\lim_{x\rightarrow 0^-}\) f(x)=f(0)=\(\lim_{x\rightarrow 0^+}\)f(x)
Therefore,f is continuous at x=0
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus,f is a continuous function.
The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 2+x, & \text{if } x \geq 0 \\ 2-x, & \text{if } x \leq 0 \end{cases} \] Then function \( f(x) \) at \( x=0 \) is: