Step 1: Write the given cell.
The cell is:
\[
\mathrm{Zn \;|\; Zn^{2+}(1M) \;\;||\;\; Cu^{2+}(1M) \;|\; Cu}
\]
Step 2: Identify anode and cathode.
- For Zn$^{2+}$/Zn: $E^{0} = -0.76 \, V$ (more negative, so Zn acts as anode).
- For Cu$^{2+}$/Cu: $E^{0} = +0.34 \, V$ (more positive, so Cu acts as cathode).
Step 3: Formula for standard cell potential.
\[
E^{0}_{\text{cell}} = E^{0}_{\text{cathode}} - E^{0}_{\text{anode}}
\]
Step 4: Substitute values.
\[
E^{0}_{\text{cell}} = \big(+0.34 \, V\big) - \big(-0.76 \, V\big)
\]
\[
E^{0}_{\text{cell}} = +0.34 + 0.76 = +1.10 \, V
\]
\[
\boxed{E^{0}_{\text{cell}} = +1.10 \, V}
\]
(i) Explain Kohlrausch's law. Write its applications.
Calculate the e.m.f. of the following cell: \[ \text{Cu(s)} | \text{Cu}^{2+} (1M) || \text{Ag}^{+} (0.01M) | \text{Ag(s)} \] Given: \[ E^0_{\text{Cu}^{2+}/\text{Cu}} = +0.34V, \quad E^0_{\text{Ag}^{+}/\text{Ag}} = +0.80V \]
Translate the following passage into English: to be translated
Translate the following into English:
Translate the following passage into English: