From the histogram (1), the input gray levels present in the image span approximately \(\mathbf{20}\) to \(\mathbf{120}\).
The piecewise linear stretch (2) shows breakpoints at \(x=15, 50, 150, 250\) with mapping
\[
(15,0)⇒(50,120)⇒(150,200)⇒(250,255).
\]
Hence,
- For \(15\le x\le 50\): slope \(m_1=\dfrac{120-0}{50-15}=\dfrac{120}{35}=3.4286\).
Input minimum \(x_{\min}=20\) maps to
\[
y_{\min}=0+m_1(20-15)\approx3.4286\times5\approx \boxed{17}.
\]
- For \(50\le x\le 150\): slope \(m_2=\dfrac{200-120}{150-50}=\dfrac{80}{100}=0.8\).
Input maximum \(x_{\max}=120\) (falls in this segment) maps to
\[
y_{\max}=120+m_2(120-50)=120+0.8\times70= \boxed{176}.
\]
Therefore the stretched image will have minimum \(\mathbf{17}\) and maximum \(\mathbf{176}\).
\[
\boxed{17,\ 176}
\]