Consider the following subspaces of \( \mathbb{R}^4 \):
\[
V_1 = \left\{ (x, y, z, w) \in \mathbb{R}^4 : x + y + 2w = 0 \right\}, \quad
V_2 = \left\{ (x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0 \right\}, \quad
V_3 = \left\{ (x, y, z, w) \in \mathbb{R}^4 : x + 3y + z + 3w = 0 \right\}.
\]
Then, the dimension of the subspace \( V_1 \cap V_2 \cap V_3 \) is equal to ............... (rounded off to two decimal places).