We are given the following electrodes:
P = Zn²⁺ (0.0001 M) / Zn
Q = Zn²⁺ (0.1 M) / Zn
R = Zn²⁺ (0.01 M) / Zn
S = Zn²⁺ (0.001 M) / Zn
The standard electrode potential for Zn²⁺/Zn is \( E^0 = -0.76 \, \text{V} \).
Using the Nernst equation:
\[ E = E^0 + \frac{0.0592}{2} \log \left( \frac{[Zn^{2+}]_{\text{right}}}{[Zn^{2+}]_{\text{left}}} \right) \]
We calculate the electrode potentials for each electrode:
For P (Zn²⁺ = 0.0001 M):
\[ E_P = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.0001} \right) = -0.6416 \, \text{V} \]
For Q (Zn²⁺ = 0.1 M):
\[ E_Q = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.1} \right) = -0.7304 \, \text{V} \]
For R (Zn²⁺ = 0.01 M):
\[ E_R = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.01} \right) = -0.7008 \, \text{V} \]
For S (Zn²⁺ = 0.001 M):
\[ E_S = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.001} \right) = -0.6712 \, \text{V} \]
Therefore, the increasing order of electrode potentials is:
\[ S > R > Q > P \]
The correct answer is (C) : Q > R > S > P.
1. Recall the Nernst Equation
The Nernst equation relates the reduction potential of an electrochemical reaction to the standard electrode potential, temperature, and activities (or concentrations) of the chemical species involved:
$E = E^0 - \frac{RT}{nF} \ln Q$
where:
- $E$ is the cell potential
- $E^0$ is the standard cell potential
- $R$ is the ideal gas constant (8.314 J/(mol·K))
- $T$ is the temperature in Kelvin
- $n$ is the number of moles of electrons transferred in the cell reaction
- $F$ is Faraday's constant (96485 C/mol)
- $Q$ is the reaction quotient
We can also express the Nernst equation using the base-10 logarithm:
$E = E^0 - \frac{2.303RT}{nF} \log Q$
At 298 K (25°C), $\frac{2.303RT}{F} \approx 0.0592$ V, so the equation becomes:
$E = E^0 - \frac{0.0592}{n} \log Q$
2. Apply the Nernst Equation to the Zn2+/Zn Electrode
The half-cell reaction is: Zn2+ + 2e- ⇌ Zn
So, $n = 2$.
The Nernst equation for this reaction is:
$E = E^0 - \frac{0.0592}{2} \log \frac{1}{[Zn^{2+}]}$
$E = E^0 + \frac{0.0592}{2} \log [Zn^{2+}]$
Here, $E^0 = -0.76$ V.
3. Calculate Electrode Potentials for P, Q, R, and S
Electrode P: $[Zn^{2+}] = 0.0001 M = 10^{-4} M$
$E_P = -0.76 + \frac{0.0592}{2} \log (10^{-4})$
$E_P = -0.76 + \frac{0.0592}{2} (-4)$
$E_P = -0.76 - 0.0592 \times 2 = -0.76 - 0.1184 = -0.8784 V$
Electrode Q: $[Zn^{2+}] = 0.1 M = 10^{-1} M$
$E_Q = -0.76 + \frac{0.0592}{2} \log (10^{-1})$
$E_Q = -0.76 + \frac{0.0592}{2} (-1)$
$E_Q = -0.76 - 0.0296 = -0.7896 V$
Electrode R: $[Zn^{2+}] = 0.01 M = 10^{-2} M$
$E_R = -0.76 + \frac{0.0592}{2} \log (10^{-2})$
$E_R = -0.76 + \frac{0.0592}{2} (-2)$
$E_R = -0.76 - 0.0592 = -0.8192 V$
Electrode S: $[Zn^{2+}] = 0.001 M = 10^{-3} M$
$E_S = -0.76 + \frac{0.0592}{2} \log (10^{-3})$
$E_S = -0.76 + \frac{0.0592}{2} (-3)$
$E_S = -0.76 - 0.0592 \times 1.5 = -0.76 - 0.0888 = -0.8488 V$
4. Arrange the Electrode Potentials in Descending Order
Comparing the values:
$E_Q = -0.7896 V$
$E_R = -0.8192 V$
$E_S = -0.8488 V$
$E_P = -0.8784 V$
Therefore, the order is: Q > R > S > P
5. Compare with the given options
Comparing the derived order with the options, we find that it matches option (C).
Final Answer:
(C) Q > R > S > P