We are given the following electrodes:
P = Zn²⁺ (0.0001 M) / Zn
Q = Zn²⁺ (0.1 M) / Zn
R = Zn²⁺ (0.01 M) / Zn
S = Zn²⁺ (0.001 M) / Zn
The standard electrode potential for Zn²⁺/Zn is \( E^0 = -0.76 \, \text{V} \).
Using the Nernst equation:
\[ E = E^0 + \frac{0.0592}{2} \log \left( \frac{[Zn^{2+}]_{\text{right}}}{[Zn^{2+}]_{\text{left}}} \right) \]
We calculate the electrode potentials for each electrode:
For P (Zn²⁺ = 0.0001 M):
\[ E_P = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.0001} \right) = -0.6416 \, \text{V} \]
For Q (Zn²⁺ = 0.1 M):
\[ E_Q = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.1} \right) = -0.7304 \, \text{V} \]
For R (Zn²⁺ = 0.01 M):
\[ E_R = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.01} \right) = -0.7008 \, \text{V} \]
For S (Zn²⁺ = 0.001 M):
\[ E_S = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.001} \right) = -0.6712 \, \text{V} \]
Therefore, the increasing order of electrode potentials is:
\[ S > R > Q > P \]
The correct answer is (C) : Q > R > S > P.
1. Recall the Nernst Equation
The Nernst equation relates the reduction potential of an electrochemical reaction to the standard electrode potential, temperature, and activities (or concentrations) of the chemical species involved:
$E = E^0 - \frac{RT}{nF} \ln Q$
where:
- $E$ is the cell potential
- $E^0$ is the standard cell potential
- $R$ is the ideal gas constant (8.314 J/(mol·K))
- $T$ is the temperature in Kelvin
- $n$ is the number of moles of electrons transferred in the cell reaction
- $F$ is Faraday's constant (96485 C/mol)
- $Q$ is the reaction quotient
We can also express the Nernst equation using the base-10 logarithm:
$E = E^0 - \frac{2.303RT}{nF} \log Q$
At 298 K (25°C), $\frac{2.303RT}{F} \approx 0.0592$ V, so the equation becomes:
$E = E^0 - \frac{0.0592}{n} \log Q$
2. Apply the Nernst Equation to the Zn2+/Zn Electrode
The half-cell reaction is: Zn2+ + 2e- ⇌ Zn
So, $n = 2$.
The Nernst equation for this reaction is:
$E = E^0 - \frac{0.0592}{2} \log \frac{1}{[Zn^{2+}]}$
$E = E^0 + \frac{0.0592}{2} \log [Zn^{2+}]$
Here, $E^0 = -0.76$ V.
3. Calculate Electrode Potentials for P, Q, R, and S
Electrode P: $[Zn^{2+}] = 0.0001 M = 10^{-4} M$
$E_P = -0.76 + \frac{0.0592}{2} \log (10^{-4})$
$E_P = -0.76 + \frac{0.0592}{2} (-4)$
$E_P = -0.76 - 0.0592 \times 2 = -0.76 - 0.1184 = -0.8784 V$
Electrode Q: $[Zn^{2+}] = 0.1 M = 10^{-1} M$
$E_Q = -0.76 + \frac{0.0592}{2} \log (10^{-1})$
$E_Q = -0.76 + \frac{0.0592}{2} (-1)$
$E_Q = -0.76 - 0.0296 = -0.7896 V$
Electrode R: $[Zn^{2+}] = 0.01 M = 10^{-2} M$
$E_R = -0.76 + \frac{0.0592}{2} \log (10^{-2})$
$E_R = -0.76 + \frac{0.0592}{2} (-2)$
$E_R = -0.76 - 0.0592 = -0.8192 V$
Electrode S: $[Zn^{2+}] = 0.001 M = 10^{-3} M$
$E_S = -0.76 + \frac{0.0592}{2} \log (10^{-3})$
$E_S = -0.76 + \frac{0.0592}{2} (-3)$
$E_S = -0.76 - 0.0592 \times 1.5 = -0.76 - 0.0888 = -0.8488 V$
4. Arrange the Electrode Potentials in Descending Order
Comparing the values:
$E_Q = -0.7896 V$
$E_R = -0.8192 V$
$E_S = -0.8488 V$
$E_P = -0.8784 V$
Therefore, the order is: Q > R > S > P
5. Compare with the given options
Comparing the derived order with the options, we find that it matches option (C).
Final Answer:
(C) Q > R > S > P
Consider the following electrochemical cell at \(298\,\text{K}\):
\[ \text{Pt} \, | \, \mathrm{HSnO_2^- (aq)} \, | \, \mathrm{Sn(OH)_6^{2-} (aq)} \, | \, \mathrm{OH^- (aq)} \, | \, \mathrm{Bi_2O_3 (s)} \, | \, \mathrm{Bi (s)} \] If the reaction quotient at a given time is \(10^6\), then the cell EMF (\(E_{\text{cell}}\)) is _________ \( \times 10^{-1} \) V (Nearest integer).
Given:
\[ E^\circ_{\mathrm{Bi_2O_3/Bi,OH^-}} = -0.44\ \text{V}, \quad E^\circ_{\mathrm{Sn(OH)_6^{2-}/HSnO_2^-,OH^-}} = -0.90\ \text{V} \]
If E$_{cell}$ of the following reaction is x $\times$ 10$^{-1}$. Find x
\(\text{Pt/ HSnO$_2$ / Sn(OH)$_6^{2-}$, OH$^-$ / Bi$_2$O$_3$ / Bi / Pt}\)
\(\text{[Reaction Quotient, Q = 10$^6$]}\)
Given \( E^o_{\text{[Sn(OH)$_3$]}} \) = -0.90 V, \( E^o_{\text{Bi$_2$O$_3$ / Bi}} \) = -0.44 V
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2