We are given the following electrodes:
P = Zn²⁺ (0.0001 M) / Zn
Q = Zn²⁺ (0.1 M) / Zn
R = Zn²⁺ (0.01 M) / Zn
S = Zn²⁺ (0.001 M) / Zn
The standard electrode potential for Zn²⁺/Zn is \( E^0 = -0.76 \, \text{V} \).
Using the Nernst equation:
\[ E = E^0 + \frac{0.0592}{2} \log \left( \frac{[Zn^{2+}]_{\text{right}}}{[Zn^{2+}]_{\text{left}}} \right) \]
We calculate the electrode potentials for each electrode:
For P (Zn²⁺ = 0.0001 M):
\[ E_P = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.0001} \right) = -0.6416 \, \text{V} \]
For Q (Zn²⁺ = 0.1 M):
\[ E_Q = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.1} \right) = -0.7304 \, \text{V} \]
For R (Zn²⁺ = 0.01 M):
\[ E_R = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.01} \right) = -0.7008 \, \text{V} \]
For S (Zn²⁺ = 0.001 M):
\[ E_S = -0.76 + \frac{0.0592}{2} \log \left( \frac{1}{0.001} \right) = -0.6712 \, \text{V} \]
Therefore, the increasing order of electrode potentials is:
\[ S > R > Q > P \]
The correct answer is (C) : Q > R > S > P.
For the given cell: \[ {Fe}^{2+}(aq) + {Ag}^+(aq) \to {Fe}^{3+}(aq) + {Ag}(s) \] The standard cell potential of the above reaction is given. The standard reduction potentials are given as: \[ {Ag}^+ + e^- \to {Ag} \quad E^\circ = x \, {V} \] \[ {Fe}^{2+} + 2e^- \to {Fe} \quad E^\circ = y \, {V} \] \[ {Fe}^{3+} + 3e^- \to {Fe} \quad E^\circ = z \, {V} \] The correct answer is: