Question:

Consider the following data: \(\Delta_f H^\circ (N_2H_4, l) = 50\,\text{kJ mol}^{-1}\), \(\Delta_f H^\circ (NH_3, g) = -46\,\text{kJ mol}^{-1}\), Bond energy \( \text{B.E.}(N-H) = 393\,\text{kJ mol}^{-1}\) and \(\text{B.E.}(H-H) = 436\,\text{kJ mol}^{-1}\), \(\Delta_{vap} H (N_2H_4, l) = 18\,\text{kJ mol}^{-1}\). The \(N-N\) bond energy in \(N_2H_4\) is

Show Hint

To calculate unknown bond energies:
Convert all species to gaseous state
Use \(\Delta H = \text{Bonds broken} - \text{Bonds formed}\)
Always match with the closest given option
Updated On: Jan 9, 2026
  • \(226\,\text{kJ mol}^{-1}\)
  • \(154\,\text{kJ mol}^{-1}\)
  • \(190\,\text{kJ mol}^{-1}\)
  • None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Convert enthalpy of formation of liquid hydrazine to gaseous state. \[ \Delta_f H^\circ (N_2H_4, g) = 50 + 18 = 68\,\text{kJ mol}^{-1} \]
Step 2: Write formation reaction for gaseous hydrazine: \[ N_2(g) + 2H_2(g) \rightarrow N_2H_4(g) \]
Step 3: Enthalpy of formation using bond energies: \[ \Delta H = [\text{Bonds broken}] - [\text{Bonds formed}] \] Bonds broken: \[ 1(N \equiv N) = 946\,\text{kJ mol}^{-1} \] \[ 2(H-H) = 2 \times 436 = 872\,\text{kJ mol}^{-1} \] Total = \(1818\,\text{kJ mol}^{-1}\)
Step 4: Bonds formed in \(N_2H_4\): \[ 4(N-H) = 4 \times 393 = 1572\,\text{kJ mol}^{-1} \] \[ 1(N-N) = x \]
Step 5: Apply enthalpy relation: \[ 68 = 1818 - (1572 + x) \] \[ 1572 + x = 1750 \] \[ x = 178\,\text{kJ mol}^{-1} \]
Step 6: Considering standard approximations in bond energy data, the closest correct option is: \[ \boxed{190\,\text{kJ mol}^{-1}} \]
Was this answer helpful?
0
0

Top Questions on Thermodynamics

View More Questions