Step 1: Rewrite the expression by separating each factor:
\[
\frac{(a^2+a+1)(b^2+b+1)(c^2+c+1)(d^2+d+1)(e^2+e+1)}{abcde}
=\prod_{x\in\{a,b,c,d,e\}}\frac{x^2+x+1}{x}.
\]
Step 2: For a positive variable \(x\),
\[
\frac{x^2+x+1}{x}=x+1+\frac{1}{x}.
\]
By AM–GM (or the inequality \(x+\dfrac{1}{x}\ge 2\) for \(x>0\)),
\[
x+\frac{1}{x}\ge 2 \; \Rightarrow \; x+1+\frac{1}{x}\ge 3,
\]
with equality iff \(x=1\).
Step 3: Applying this bound to each factor and multiplying,
\[
\prod_{x\in\{a,b,c,d,e\}}\Big(x+1+\frac{1}{x}\Big)\ge 3^5=243.
\]
Equality occurs when \(a=b=c=d=e=1\).
Conclusion: The minimum value of the given expression is 243.