Step 1: Sharing the Good \( y \). Since Anil and Binod decide to share good \( y \) equally, each person receives half of the total available quantity of good \( y \). The total quantity of good \( y \) is 100, so each person will receive: \[ y_{{Anil}} = y_{{Binod}} = \frac{100}{2} = 50 \] Step 2: Maximizing Utility Using the Budget Constraint. The total quantity of good \( x \) is 50, so Anil and Binod together must share the total available amount of good \( x \). Let \( x_{{Anil}} \) be the amount of good \( x \) that Anil receives. The remaining amount of good \( x \), \( x_{{Binod}} \), is then: \[ x_{{Binod}} = 50 - x_{{Anil}} \] Next, we need to maximize their utility functions subject to the budget constraint. The general utility maximization problem involves setting up a Lagrangian function. We want to allocate goods \( x \) and \( y \) between Anil and Binod in such a way that their marginal utilities are proportional to the price ratio.
Step 3: Utility Maximization and Solution. The solution to this problem can be derived by maximizing the utility functions subject to the budget constraint. After solving, we find that the optimal allocation of good \( x \) for Anil is: \[ x_{{Anil}} = 21 \]
Consider the following Harrod-Domar growth equation: \[ \frac{s}{\theta} = g + \delta \] where \( s \) is the saving rate, \( \theta \) is the capital-output ratio, \( g \) is the overall growth rate, and \( \delta \) is the capital depreciation rate. If \( \delta = 0 \) and \( s = 20% \), then to achieve \( g = 10% \), the capital-output ratio will be ________ (in integer).
Let \( Y \) be income, \( r \) be the interest rate, \( G \) be government expenditure, and \( M_s \) be money supply. Consider the following closed economy IS-LM equations with a fixed general price level (\( \bar{P} \)):
IS equation: \[ Y = 490 + 0.6Y - 4r + G \] LM equation: \[ \frac{M_s}{\bar{P}} = 20 + 0.25Y - 10r \] If \( G = 330 \) and \( \frac{M_s}{\bar{P}} = 500 \), then the equilibrium \( Y \) is ________ (round off to one decimal place).
Consider the two scenarios for a small open economy based on the Mundell-Fleming IS-LM model with floating exchange rate and perfect capital mobility.
Where \( Y \) is aggregate income, \( C \) is aggregate consumption, \( I \) is investment, \( r^* \) is the world interest rate, \( G \) is government expenditure, \( T \) is taxes, \( NX \) is net exports, \( e \) is exchange rate, \( M \) is money supply, and \( P^* \) is general price level. Given the relationships:
\( I \) has a negative relationship with \( r^* \),
\( NX \) depends negatively on both \( e \) and \( Y \),
\( P^* \) is fixed.
Which of the following statements is/are CORRECT?
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
In the following figure, four overlapping shapes (rectangle, triangle, circle, and hexagon) are given. The sum of the numbers which belong to only two overlapping shapes is ________