Step 1: Write down the given data
Number of turns, \( N = 100 \)
Radius of the coil, \( r = 10 \text{ cm} = 0.1 \text{ m} \)
Current, \( I = 2 \text{ A} \)
Step 2: Recall the formula for magnetic field at the center of a circular coil
The magnetic field \( B \) at the center of a coil with \( N \) turns carrying current \( I \) is:
\[
B = \frac{\mu_0 N I}{2r}
\]
where \( \mu_0 = 4 \pi \times 10^{-7} \, \text{T·m/A} \) is the permeability of free space.
Step 3: Substitute the known values
\[
B = \frac{4 \pi \times 10^{-7} \times 100 \times 2}{2 \times 0.1}
= \frac{4 \pi \times 10^{-7} \times 200}{0.2}
= \frac{800 \pi \times 10^{-7}}{0.2}
\]
Step 4: Simplify the expression
\[
B = 4000 \pi \times 10^{-7} = 4000 \times 3.1416 \times 10^{-7}
= 12566.4 \times 10^{-7} = 1.25664 \times 10^{-3} \text{ T}
\]
Step 5: Express the answer in given format
\[
B = 12.56 \times 10^{-4} \text{ T}
\]
Step 6: Conclusion
The magnitude of the magnetic field at the center of the coil is \( 12.56 \times 10^{-4} \text{ T} \).