The given state \( \psi(x, t) \) is a linear superposition of the second and fourth normalized harmonic oscillator wave functions, i.e., \( \psi_2(x, t) \) and \( \psi_4(x, t) \), which are energy eigenstates of the quantum harmonic oscillator. The energy eigenvalues corresponding to these states are:
- Energy of state \( \psi_2(x, t) \) is \( E_2 = \left( 2 + \frac{1}{2} \right) \hbar \omega = \frac{5}{2} \hbar \omega \),
- Energy of state \( \psi_4(x, t) \) is \( E_4 = \left( 4 + \frac{1}{2} \right) \hbar \omega = \frac{9}{2} \hbar \omega \).
For the state \( \psi(x, t) = \psi_2(x, t) + \psi_4(x, t) \), the time-dependent wave functions are:
\[
\psi_2(x, t) = \psi_2(x) e^{-i E_2 t / \hbar} = \psi_2(x) e^{-i \frac{5}{2} \omega t},
\]
\[
\psi_4(x, t) = \psi_4(x) e^{-i E_4 t / \hbar} = \psi_4(x) e^{-i \frac{9}{2} \omega t}.
\]
At \( t = 0 \), we have:
\[
\psi(x, t = 0) = \psi_2(x) + \psi_4(x).
\]
Now, for the wave functions to be orthogonal at some time \( t \), the phase difference between the two states must be an odd multiple of \( \pi \). The phase difference between the two energy eigenstates is:
\[
\Delta \phi = \left( \frac{9}{2} \omega - \frac{5}{2} \omega \right) t = 2 \omega t.
\]
For orthogonality, we require:
\[
2 \omega t = \pi $\Rightarrow$ t = \frac{\pi}{2 \omega}.
\]
Thus, the wave function \( \psi(x, t = 0) \) will be orthogonal to \( \psi(x, t) \) at time \( t = \frac{\pi}{2\omega} \), which corresponds to option (A).