From the given root-locus, $C(s)$ has two coincident zeros at $s=-1$.
Thus the controller numerator is proportional to $(s+1)^2$, i.e.,
\[
C(s) = K_P + \frac{K_I}{s} + K_Ds
= \frac{K_Ds^2 + K_Ps + K_I}{s}
= \frac{K_D(s+1)^2}{s},
\]
so the coefficient ratios are $K_P:K_I:K_D = 2:1:1 \Rightarrow K_P=2K_D,\ K_I=K_D$.
At $\omega=1$,
\[
|C(j\omega)|=\left|K_P + \frac{K_I}{j\omega} + K_D j\omega\right|
= \sqrt{K_P^2 + \left(K_D\omega-\frac{K_I}{\omega}\right)^2}
= \sqrt{(2K_D)^2 + (K_D-K_D)^2}=2K_D.
\]
Given $|C(j1)|=2 \Rightarrow 2K_D=2 \Rightarrow K_D=1.0$.