Consider a solenoid of length \( L \) and radius \( R \), where \( R \ll L \). A steady current flows through the solenoid. The magnetic field is uniform inside the solenoid and zero outside.
Among the given options, choose the one that best represents the variation in the magnitude of the vector potential, \( (0, A_\phi, 0) \) at \( z = L/2 \), as a function of the radial distance \( r \) in cylindrical coordinates.

Useful information: The curl of a vector \( \mathbf{F} \), in cylindrical coordinates is \[ \nabla \times \mathbf{F}(r, \phi, z) = \hat{r} \left[ \frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z} \right] + \hat{\phi} \left[ \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right] + \hat{z} \left[ \frac{1}{r} \left( \frac{\partial}{\partial r} (r F_\phi) \right) - \frac{1}{r} \frac{\partial F_r}{\partial \phi} \right] \] 
The figure shows an opamp circuit with a 5.1 V Zener diode in the feedback loop. The opamp runs from \( \pm 15 \, {V} \) supplies. If a \( +1 \, {V} \) signal is applied at the input, the output voltage (rounded off to one decimal place) is:
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:
In the transistor circuit shown in the figure, \( V_{BE} = 0.7 \, {V} \) and \( \beta_{DC} = 400 \). The value of the base current in \( \mu A \) (rounded off to one decimal place) is: