Step 1: Write revenue and costs for $n$ students.
Revenue $= \rupee 2000 \times n = \rupee 2000n$.
Costs $= \rupee 100{,}000$ (infrastructure, by ABC) $+\ \rupee 400 \times n$ (running, by XYZ).
Thus, total cost $= \rupee(100{,}000 + 400n)$.
Step 2: Profit of the {program (before 60:40 split).}
\[
\text{Profit} \;=\; \text{Revenue} - \text{Total Cost}
= 2000n - (100{,}000 + 400n)
= 1600n - 100{,}000.
\]
Step 3: Break-even / profitability condition.
For the program to be profitable (and hence ABC’s initial \rupee 100{,}000 to be recovered within the year from the joint profit),
\[
1600n - 100{,}000 \;\ge\; 0
\;\Rightarrow\;
n \;\ge\; \frac{100{,}000}{1600}
\;=\; 62.5.
\]
Minimum integer $n=\boxed{63}$.