Given:
\[
Q = 25 \, \text{g/s}, u = 5 \, \text{m/s}, \sigma_x = 150 \, \text{m}, \sigma_y = 200 \, \text{m}
\]
The Gaussian dispersion model for concentration at a downwind station is:
\[
C = \frac{Q}{2\pi u \sigma_x \sigma_y} \exp\left( -\frac{y^2}{2\sigma_y^2} \right)
\]
For simplicity, we assume \( y = 0 \) (ground-level concentration), so:
\[
C = \frac{25}{2\pi \times 5 \times 150 \times 200} = \frac{25}{471238.9} \approx 0.000053
\]
Converting to \(\mu g/m^3\) (since \(1 \, \text{g} = 1000000 \, \mu g\)):
\[
C \approx 0.000053 \times 1000000 = 0.053 \, \mu g/m^3
\]
Thus, the concentration of CO is approximately:
\[
\boxed{0.05 \, \mu g/m^3}
\]