Kinetic energy
Less
Total mechanical energy of a satellite is the sum of its kinetic energy (always positive) and potential energy (may be negative). At infinity, the gravitational potential energy of the satellite is zero. As the Earth-satellite system is a bound system, the total energy of the satellite is negative.
Thus, the total energy of an orbiting satellite at infinity is equal to the negative of its kinetic energy.
An orbiting satellite acquires a certain amount of energy that enables it to revolve around the Earth. This energy is provided by its orbit. It requires relatively lesser energy to move out of the influence of the Earth’s gravitational field than a stationary object on the Earth’s surface that initially contains no energy.
If mass is written as \( m = k c^P G^{-1/2} h^{1/2} \), then the value of \( P \) will be:
Choose the correct answer from the options given below:
List – I | List – II |
---|---|
(a) Gravitational constant | (i) [L2T-2] |
(b) Gravitational potential energy | (ii) [M-1L3T-2] |
(c) Gravitational potential | (iii) [LT-2] |
(d) Gravitational intensity | (iv) [ML2T-2 |
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?
The work which a body needs to do, against the force of gravity, in order to bring that body into a particular space is called Gravitational potential energy. The stored is the result of the gravitational attraction of the Earth for the object. The GPE of the massive ball of a demolition machine depends on two variables - the mass of the ball and the height to which it is raised. There is a direct relation between GPE and the mass of an object. More massive objects have greater GPE. Also, there is a direct relation between GPE and the height of an object. The higher that an object is elevated, the greater the GPE. The relationship is expressed in the following manner:
PEgrav = mass x g x height
PEgrav = m x g x h
Where,
m is the mass of the object,
h is the height of the object
g is the gravitational field strength (9.8 N/kg on Earth) - sometimes referred to as the acceleration of gravity.