For the first equation \(x + y + 1 = 0\): Substitute \(x = -4\) and \(y = 3\):
\[ (-4) + 3 + 1 = 0 \]
This is true, so the point lies on the first line.
For the second equation \(x - y = 1\): Substitute \(x = -4\) and \(y = 3\):
\[ (-4) - 3 = -7 \]
This is false, so the point does not lie on the second line.
Thus, the point \((-4, 3)\) lies on the first line but not on the second line.
Directions: In Question Numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R).
Choose the correct option from the following:
(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
(C) Assertion (A) is true, but Reason (R) is false.
(D) Assertion (A) is false, but Reason (R) is true.
Assertion (A): For any two prime numbers $p$ and $q$, their HCF is 1 and LCM is $p + q$.
Reason (R): For any two natural numbers, HCF × LCM = product of numbers.
Directions: In Question Numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R).
Choose the correct option from the following:
(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
(C) Assertion (A) is true, but Reason (R) is false.
(D) Assertion (A) is false, but Reason (R) is true.
In an experiment of throwing a die,
Assertion (A): Event $E_1$: getting a number less than 3 and Event $E_2$: getting a number greater than 3 are complementary events.
Reason (R): If two events $E$ and $F$ are complementary events, then $P(E) + P(F) = 1$.