Step 1: Identify the given parameters.
Initial thickness of ingot \( h_0 = 200 \text{ mm} \).
Final thickness of ingot \( h_f = 100 \text{ mm} \).
Roll diameter \( D = 500 \text{ mm} \).
Roll radius \( R = D/2 = 500/2 = 250 \text{ mm} \).
Coefficient of friction \( \mu = 0.2 \).
Step 2: Calculate the maximum possible reduction per pass (\( \Delta h_{max} \)).
For hot rolling, the maximum possible reduction (or draft) \( \Delta h_{max} \) without slipping is given by the formula:
\[
\Delta h_{max} = \mu^2 R
\]
Substitute the given values:
\[
\Delta h_{max} = (0.2)^2 \times 250 \text{ mm}
\]
\[
\Delta h_{max} = 0.04 \times 250 \text{ mm}
\]
\[
\Delta h_{max} = 10 \text{ mm}
\]
This means in each pass, the thickness can be reduced by a maximum of 10 mm.
Step 3: Calculate the total reduction required.
Total reduction \( \Delta h_{total} = h_0 - h_f \).
\[
\Delta h_{total} = 200 \text{ mm} - 100 \text{ mm} = 100 \text{ mm}
\]
Step 4: Calculate the minimum number of passes.
Minimum number of passes \( N = \frac{\Delta h_{total}}{\Delta h_{max}} \).
\[
N = \frac{100 \text{ mm}}{10 \text{ mm/pass}}
\]
\[
N = 10 \text{ passes}
\]
The final answer is $\boxed{\text{3}}$.